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Abstract

A measurement technique was developed to extract the general shape of
a plutonium object containing 249 Pu using second order cross correlations
and the nonnegative least squares (NNLS) algorithm. This technique relies
on the use of a response matrix composed of the detector-detector cross
correlations for four detectors arranged in a tetrahedron about the object
being measured. For this work, the response matrix was empirically measured
but work towards analytically generating this matrix was begun. This paper
will show a method of generating the detector-detector cross correlations.

1 Introduction

In a non-multiplying and non-attenuating medium containing a spontaneous
fission source such as 24° Py, the detector-detector cross correlations are addi-
tive. Thus, the object can be modeled as a finite collection of point sources.
This linear system can be represented mathematically as RX = B where R
is the response matrix, B is the set of measured cross correlations for the
object, and X is the unknown shape vector. R is simply the set of empiri-
cally measured or analytically generated detector-detector cross correlations
for every grid point in the volume of interest. This methodology is described
in more detail in Chapter 2 of Reference [2].
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2 Analytical Model of Cross Correlations

Ideally, the cross correlations can be analytically generated if one knows
the probability distributions of the radiation particles emitted by the spon-
taneous fissioning isotope. For this study the ?**Pu isotope was emulated
by ?*2Cf. Since spontaneous fissioning isotopes emit both neutrons and
gamma rays, the cross correlation between the ith and jth detectors, C;;(7;;)
will be composed of four components due to the four possible coincident
pairs: neutron-neutron (n,n), neutron-gamma (n,g), gamma-neutron (gn),
and gamma-gamma (g,g). Thus, C;;(7;;) is

Cij(Ti5) = Cnn(7ij) + Crg(Tij) + Cyn(7i5) + Cog(Ti5)- (1)

Each subcomponent, Cy, (7i;), Cng(7ij), Con(Tij), and Cy4(7;5), can be
computed from the probability distribution of the coincident pair, the source
rate, multiplicities of the radiation particle, and the geometry factors be-
tween the source and each pair of detectors. Thus, C;;(7;;) can be computed
using Equation (2) below where S is the source rate and g; and g; are the
corresponding geometry factors for the source attenuation due to distance
of the source from detectors ¢ and 5. The intrinsic detector efficiencies are
not explicitly shown below because they are included in the joint probability
functions py, n, Pg.gs Pn,g, and pg . The neutron and gamma multiplicities are
v and 7, respectively.

Ci,j(1i5) =S9:9; [V(V — 1)ppn(Tij) + UPn,g(Tij) + F0Dgn(Tij)

(2)

+ (v — 1)109,9(7'2']')]

All that remains to compute the detector-detector cross correlations are

the form of the joint probability distribution functions: py n, Pn.g, Pgn, and

Dg,g- Since the joint pdf can be computed by convolving the marginal pdfs the

detector-detector cross correlation can be computed by convolving together
the source-detector correlations as shown in Equations (3) to (6).

Prn(Tij) = [ oo Pu(=Ti)Pu (T35 + 7)dr; (3)
Png(Tij) = fooo Pn(—Ti)pg(Tij + 73)dT; (4)
Pon(Tis) = [T Dg(—Ti)pn (75 + 73)dr; (5)
Pog(Tij) = _oooo Po(—=Ti)pg(Tij + T)dT; (6)



To compare an analytically generated cross correlation with a measured
one, detectors 1 and 4 from the four-detector tetrahedron were used. The
source-detector spacing was 36.74 cm and the peak detector efficiency for
neutrons was 53.81%. The energy threshold for neutrons was 0.66 MeV.
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Figure 1: Comparison of theoretical and measured detector-detector cross
correlations.

Figure 1 shows the measured and theoretical cross correlations. The most
apparent discrepancy are the shoulders of the measured cross correlation
(1 < —32 ns and 7 > 32 ns) which are higher than the analytically generated
cross correlation. This effect is primarily due to scattering processes that are
not included in the analytical pdfs. Section 3 below describes how scattering
effects can be included.

3 Scattering

The coincidence measurements in the laboratory include counts from acciden-
tal coincidences. There are several sources of accidental coincidences. Some
sources of background produce uncorrelated counts in the detectors. Other
sources though, are correlated with the source material being measured. For



example, neutrons from the spontaneous isotope can interact with the sur-
rounding materials and produce gammas via inelastic collisions. Also, the
neutrons can scatter from the surrounding materials into one of the four
detectors. The correlation measurement system only removes uncorrelated
background. Therefore, the analytically generated cross correlations must
include scattering effects.

The scattered portions of the detector-detector cross correlation are com-
posed of five components since the scattered particle can be coincident with
either a gamma, (s,g) and (g,s), neutron, (s,n) and (n,s), or another scattered
particle, (s,s). Therefore, the scattered components of the detector-detector
cross correlation between detectors ¢ and j, can be computed as shown in
Equation (7) below. Note that only one geometry factor is shown for the
first four components as the other geometry factor is included in the joint
scattering pdfs.

Cij,scattered(Tij) = Cs,n(Tij) + Cn,s(Tij) + Cs,g(Tij) + Cg,s (Tij) + Cs,s(Tij)
= S9Upsn(Tij) + S9iVPn,s(Ti) + Sg57Ds,4(Tij) (7)
+ SGiVPg,s(Tij) + SDs,s(Tij)

One can generate the joint scattering pdfs ps,(7i;), Pns(Tij), Ps,g(Tij),
Pg,s(7ij), and pss(7;;) by convolving the marginal pdfs as shown in Equa-
tions (8) to (12). Thus, the individual scattering pdfs, p,(7), p,(7), and
ps(7) must be known. The marginal pdfs for the gamma and neutron par-
ticles were derived in Chapter 3 of Reference[2]. The marginal pdf for the
scattered particles were computed using a MCNP™[1] simulation.

ps,n(Tij) = f_oo pS(_Ti)pn(TZJ — 7;)dT; (8)
pn,s(Tij) = ffooo pn(_Tz’)ps(Tm - Tz)de (9)
Psg(Ti) = [Too Ds(=T)py (735 — Ti)dTi (10)
Pos(Tij) = [Zo Dg(—=Ti)ps(Tij — Ti)dTi (11)
ps,s(Tij) = fooo ps(_Ti)ps(Tij - Tz‘)dTi (12)

The simulation included the aluminum table on which the detectors rested
and the floor which was modeled as a 1-foot thick slab of concrete. The table
and detectors were placed at the same heights as in the lab. The total
neutron and photon fluxes along with the uncollided flux in each detector
was tabulated. The 252Cf source was modeled as a Watt fission spectrum.



The photon portion of the source was not emulated in order to demonstrate
that the resultant gamma rays are due to secondary production rather than
the 2°2Cf source itself. Coupled neutron-photon transport was turned on in
the simulation. Neutrons whose energies were between 1 MeV and 17 MeV
were tallied at the point detectors. Photons between 200 keV and 17 MeV
were also tallied at the point detectors. Both sets of tallies were collected
from 1 to 100 nanoseconds after fission. The detector count rate per fluence
was calculated by dividing the total detector count rate by the total fluence
at the detector. The count rate produced by scattering events was then
computed by multiplying this ratio by the scattered fluence.

The marginal pdf for the scattering particle arises from either of two
scattering interactions. One, a neutron can scatter in surrounding materials,
such as the detector pedestal, floor, or table. Or, a gamma can be generated
from a neutron inelastically scattering in the surrounding materials. Figure 2
shows the marginal pdf py(7), formed from both the elastically scattered
neutrons and the gammas produced from inelastic interactions.
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Figure 2: Marginal scattering probability density function, ps(7) for a source
at grid point (2,2,2) and a source-detector distance of 36.74 cm.

Figure 3 shows the results of the MCNP simulation overlaid on the cor-
responding time-of-flight (TOF) spectrum for Detector 4. The secondary
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production of gamma rays underlies the neutron distribution in the TOF.
The scattered neutrons appear at time lag values greater than 20 ns which
affects the tail of the neutron distribution and the apparent uncorrelated
background.
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Figure 3: Calculated (MCNP) neutron and photon components of floor scat-
tering for detector #4.

The analytic and semi-analytic detector-detector cross correlation can
now be generated using

Cij(Ti5) = Cnn(Ti5) + Cng(Tij) + Cyn(7ij) + Coq(Ti5)

(13)
+ Csn(Tij) + Cns(7ij) + Cs 4(1i5) + Co s(7i5) + Cs 5(735)-

All of the scattered and non-scattered components of the detector-detector
cross correlation for C14(714) are shown in Figure 4. The non-scattered com-
ponents, Cy,(714), Cpng(T14), Cyn(m14), and C, ,(714) are shown as dashed
lines but they are not shown in the legend of the graph.

As expected, the component due to scattering alone, C; 4(714) is the small-
est. In fact, it is more than two orders of magnitude smaller than C,, ,,(714)
which is not a very prominent feature in the cross correlation. The maximum
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Figure 4: Scattered and non-scattered components of C14(714).

amplitude of the scattering components that arise from a scattered particle
being coincident with a gamma (Cj 4(714) and Cy4(714)), or with a neutron
(Cs,n(m1a) and C,, 5(T14)), are an order of magnitude less than the C;, ,,(714).
In order to better understand the relative magnitudes of the component cross
correlations, Table 1 shows the maximum count rate for each component in
the second column and its ratio as a percentage of the maximum amplitude
of the g-g peak in the last column.

In Figure 4, it is apparent that the theoretical cross correlation overesti-
mates the number of neutrons in the region of 24 to 32 ns and -24 to -32 ns and
underestimates the number of neutrons in the region —23 ns < 7 < 23 ns.
This can probably be explained by the detector efficiency function, €(7) be-
ing slightly incorrect for this particular source-detector distance. Since the
detector efficiency is derived by assuming that the entire distribution that
lies to the right of the gamma peak is solely due to neutrons, secondary pro-
cesses like inelastic scattering that inject gamma detections into this region
of the TOF, distort the derived neutron efficiency curve.



Table 1: Comparison of maximum amplitudes of the component cross corre-
lations.

Cross Correlation Maximum amplitude Percentage of C, 4

(counts/fission) (%)
., 0.9147 100.00
Cym Cg 0.1581 17.28
Con 0.1314 14.36
Cyy Crs 0.0072 00.78
Cogr Cys 0.0066 00.72
Cs.,s 0.0005 00.06

4 Conclusions

By combining analytically and semi-analytically components of the detector-
detector cross correlation, a fairly good estimate of a measured cross cor-
relation is possible. To improve the generated cross correlation, a better
model of the detector efficiency function for both neutrons and gamma rays
is required. Currently, only the efficiency function for neutrons is estimated.
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